The parieto-insular vestibular cortex in humans: more than a single area?

Sebastian M. Frank and Mark W. Greenlee
1Institute for Experimental Psychology, University of Regensburg, Regensburg, Germany; 2Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire; and 3Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, Rhode Island

Submitted 19 December 2017; accepted in final form 3 July 2018

Frank SM, Greenlee MW. The parieto-insular vestibular cortex in humans: more than a single area? J Neurophysiol 120: 1438–1450, 2018. First published July 11, 2018; doi:10.1152/jn.00907.2017.—Here, we review the structure and function of a core region in the vestibular cortex of humans that is located in the midposterior Sylvian fissure and referred to as the parieto-insular vestibular cortex (PIVC). Previous studies have investigated PIVC by using vestibular or visual motion stimuli and have observed activations that were distributed across multiple anatomical structures, including the temporo-parietal junction, retroinsula, parietal operculum, and posterior insula. However, it has remained unclear whether all of these anatomical areas correspond to PIVC and whether PIVC responds to both vestibular and visual stimuli. Recent results suggest that the region that has been referred to as PIVC in previous studies consists of multiple areas with different anatomical correlates and different functional specializations. Specifically, a vestibular but not visual area is located in the parietal operculum, close to the posterior insula, and likely corresponds to the nonhuman primate PIVC, while a visual-vestibular area is located in the retroinsular cortex and is referred to, for historical reasons, as the posterior insular cortex area (PIC). In this article, we review the anatomy, connectivity, and function of PIVC and PIC and propose that the core of the human vestibular cortex consists of at least two separate areas, which we refer to together as PIVC+. We also review the organization in the nonhuman primate brain and show that there are parallels to the proposed organization in humans.

area PIC; area PIVC; self-motion perception; vestibular cortex; visual-vestibular network

INTRODUCTION

The vestibular sensors are located in the inner ear, neighboring the sensors of the auditory system, and consist of the semicircular canals that signal angular accelerations and the otoliths that signal linear accelerations, including effects of gravity (Angelaki and Cullen 2008; Bárány 1907; Day and Fitzpatrick 2005; Fernández and Goldberg 1976; Goldberg and Fernández 1971). Traditionally, the vestibular system has been conceived of as the balance system of the brain — its sensors detect movements of the head and this information supports the reflexive control of posture, gait, and gaze (Brandt and Dieterich 2017; Bronstein et al. 2015; Day and Fitzpatrick 2005; Dieterich and Brandt 1995, 2015; Fetter 2007; Gimmon et al. 2017; Horak 2006; Khan and Chang 2013; Mergner 2010; Mergner et al. 2009). However, in addition to these established functions, it has become clear that vestibular cues also influence a wide range of other processes, which may not be immediately thought of as “vestibular.” This includes basic autonomic functions (Yates et al. 2014; Yates and Miller 1998) but also higher-level processes such as spatial navigation, learning, and memory (Brandt et al. 2005; Cullen and Taube 2017; Gurvich et al. 2013; Smith and Zheng 2013; Taube 2007; Taube et al. 1996), perceptual and motor decision making (Medendorp and Selen 2017), mental imagery and mental rotation (Falconer and Mast 2012; Mast and Caulescu 2012; Smith et al. 2017), or bodily self-consciousness (Lopez 2015, 2016). The vestibular system does not operate in isolation but strongly interacts with other sensory systems, in particular with the visual system (Angelaki and Cullen 2008; Cullen 2012; Greenlee et al. 2016; Gu 2018; Smith et al. 2017). Such interactions are helpful to resolve ambiguities in sensory signals. For example, when an object is getting closer, the brain has to determine whether that is because the object is moving independently or because the observer is moving or a combination of both. Vestibular signals can help to resolve this ambiguity inherent in visual signals (Bremmer 2011; Britten 2008; DeAngelis and Angelaki
Vestibular cues are projected from the semicircular canals and the otoliths via the vestibular portion of the VIII cranial nerve to the vestibular nuclei in the brain stem (Barmack 2003; Büttner-Ennever 1992; Hightstein and Holstein 2006; Korte 1979). Further projections are sent to the cerebellum (Hitier et al. 2014; Korte and Mugnaini 1979). The vestibular nuclei integrate vestibular, cerebellar, visual, and somatosensory signals (Barmack 2003; Büttner-Ennever 1992; Carleton and Carpenter 1983; Cullen 2012; Goldberg et al. 2013; Shinder and Taube 2010; Waespe and Henn 1977) and are critically involved in several reflexes that stabilize our perception and position in space (Barmack 2003), such as the vestibulo-ocular reflex (Bronstein et al. 2015; Dieterich and Brandt 1995; Fetter 2007) or the vestibulocervical and vestibulospinal reflexes (Cullen 2012; Goldberg and Cullen 2011; Goldberg et al. 2013; Wilson and Peterson 1978). Moreover, the vestibular nuclei participate in orthostatic reflex functions of the autonomic nervous system that adjust blood pressure, heart rate, and respiration (Yates et al. 2014; Yates and Miller 1998). Finally, it should be noted that voluntary head movements are preceded by an anticipatory (so-called efference copy) signal, which the cerebellum uses to compute a forward model for the expected vestibular feedback resulting from the movement (Cullen 2012). The prediction is then matched with the incoming vestibular signals and, if there is a match, the responses of the brain stem nuclei to the vestibular cues are suppressed (Brooks et al. 2015; Brooks and Cullen 2014; Cullen and Brooks 2015), thus enabling a distinction between externally caused motion and self-generated head/body motion already at an early subcortical level (Cullen and Taube 2017).

The brain stem nuclei send projections to multiple thalamic nuclei, including the ventral posterior, ventral lateral, ventral anterior, intralaminar, and even geniculate nuclei (Büttner and Henn 1976; Hitier et al. 2014; Kirsch et al. 2016; Lang et al. 1979; Lopez and Blanke 2011; Meng et al. 2007; Wijesinghe et al. 2015; Wirth et al. 2018). The anterior nuclear group in the thalamus, including the anterodorsal and anteroventral nuclei, also receives strong indirect vestibular-related projections through multiple subcortical connections (see Taube 2007 for review). From the thalamus, two pathways emerge that send these vestibular signals to the cortex (Cullen and Taube 2017; Hitier et al. 2014; Shinder and Taube 2010): The anterior pathway, via the anterior nuclear group, plays an important role for navigational processes and sends vestibular-related information to the retrosplenial and entorhinal cortices. The posterior pathway originates from the ventral posterior thalamus and projects to the vestibular cortex (Akbarian et al. 1992). Further projections to the vestibular cortex originate from the pulvinar (for a detailed overview of the thalamic vestibular projection patterns, see Hitier et al. 2014; Lopez and Blanke 2011; Shinder and Taube 2010; Wijesinghe et al. 2015). The transmission of vestibular signals to the cerebral cortex is very fast, with a latency as short as 6 ms (de Waele et al. 2001). Early neurophysiological recordings in the cerebral cortex of cats (Ödkvist et al. 1975; Walzl and Mountcastle 1949), rhesus monkeys (Büttner and Buettner 1978; Fredrickson et al. 1966), and squirrel monkeys (Ödkvist et al. 1974), as well as results from cortical stimulation in human subjects (Penfield 1957; Penfield and Rasmussen 1950) suggested the existence of multiple sites in the cortex where vestibular signals are represented, including regions located at the junction of the intraparietal sulcus (IPS) with the postcentral sulcus (referred to as area 2v), the fundus of the central sulcus (referred to as area 3av), and the Sylvian fissure with the surrounding peri-Sylvian cortex. Given the diverse functions that have been attributed to the vestibular system, one might expect to find such a distributed network of areas in the cerebral cortex that is, at least to some degree, “vestibular” and overlaps with other sensory and cognitive networks.

Indeed, detailed investigations in nonhuman primates in the past decades have revealed an even more extended vestibular network in the neocortex than was originally expected (Angelaki and Cullen 2008; Gu 2018; Guldin and Grüsser 1998; Lopez and Blanke 2011; Shinder and Taube 2010;Smith et al. 2017; Ventre-Dominey 2014). Results from human imaging studies point to a similarly distributed cortical vestibular network, including regions in the parietal, somatosensory, cingulate, frontal, and insular cortices (Dieterich and Brandt 2015; Lopez and Blanke 2011; Smith et al. 2017; Ventre-Dominey 2014). Figure 1 shows an overview of the vestibular network in the cerebral cortex of nonhuman primates and humans. Some attempts have been made to combine vestibular areas into separate clusters that may support different functions (see Lopez and Blanke 2011; Shinder and Taube 2010). However, to date it is not clear how these different cortical areas interact and how computations within each area relate to an overall vestibular sensation of self-motion, although some progress has been made for certain regions [e.g., the medial superior temporal area (MST); see Bremer et al. 1999; Duffy 1998; Gu et al. 2006, 2008].

Based on the organization of other sensory cortices, such as the visual or auditory cortical systems (Felleman and Van Essen 1991; Kaas and Hackett 2000), one may wonder whether there is a center or core region within the vestibular cortex. Indeed, there is one region that appears to be of critical importance to vestibular processing. Studies in humans (e.g., Bense et al. 2001; Dieterich et al. 2003; Eickhoff et al. 2006; Fasold et al. 2002; Frank et al. 2016b; Kahane et al. 2003; Lobel et al. 1998; Mazzola et al. 2014; Penfield 1957; Penfield and Rasmussen 1950) and nonhuman primates (Akbarian et al. 1988; Chen et al. 2010, 2011, 2016; Grüsser et al. 1990a, 1990b; Guldin and Grüsser 1998) point to the midposterior Sylvian fissure as a site of robust vestibular responses across studies and vestibular stimulation techniques (Lopez et al. 2012; zu Eulenburg et al. 2012). Based on its location and in analogy to the nomenclature used in research on nonhuman primates, this region has been referred to as the parieto-insular vestibular cortex (PIVC) in humans (Dieterich and Brandt 2008, 2015, 2018; Lopez and Blanke 2011; Lopez et al. 2012; zu Eulenburg et al. 2012). Although there is general agreement that the region described as PIVC in humans is critical to vestibular processing, there is no firm agreement about the exact location and spatial extent of PIVC (Dieterich and Brandt 2015, 2018; Eickhoff et al. 2006; Lopez and Blanke 2011; Lopez et al. 2012; zu Eulenburg et al. 2012), such that activations spanning from the temporo-parietal junction (TPJ) down to the retrosinsula, parietal operculum, and posterior insula have been referred to as PIVC in different studies.
In this review article, we want to bring forth a new idea to resolve this ambiguity about the location and spatial extent of PIVC: rather than a single area, the region that has been referred to as PIVC may consist of at least two anatomically and functionally separate areas (Frank et al. 2016b; Wirth et al. 2018), similar to the organization that is found in the nonhuman primate brain (Chen et al. 2010, 2011, 2016; Gu 2018; Guldin and Grüsser 1998).

Our discussion is based on recent functional and structural brain-imaging studies (Billington and Smith 2015; Frank et al. 2014, 2016a, 2016b; Schindler and Bartels 2018; Wirth et al. 2018) that have brought forth evidence for the existence of at least one additional, visual-vestibular area in close proximity to and immediately posterior to PIVC. This region has been named the posterior insular cortex area (PIC; Sunaert et al. 1999), although it is located in the retroinsular cortex (Fig. 2). Overall, the results suggest that PIC differs from PIVC in anatomical location (Frank et al. 2016b), anatomical connectivity (Wirth et al. 2018), and responses to visual motion cues (Billington and Smith 2015; Frank et al. 2014, 2016a, 2016b; Schindler and Bartels 2018), suggesting a separation between PIVC and PIC. This proposed separation parallels the architecture of the vestibular cortex in nonhuman primates (Gu 2018; Smith et al. 2017), where a visual-vestibular asso-

Fig. 1. The cortical vestibular network in nonhuman primates (A) and humans (B). Regions where vestibular responses have been observed are shown on the inflated left (medial view) and right hemispheres (lateral view) of an average MRI macaque brain (Seidlitz et al. 2018) and an average MRI human brain (Dale et al. 1999; Fischl et al. 1999) (light gray, gyri; dark gray, sulci). The depicted areas have been gathered and combined from previous articles reviewing the vestibular network (Dieterich and Brandt 2008; Gu 2018; Guldin and Grüsser 1998; Lopez and Blanke 2011; Shinder and Taube 2010; Smith et al. 2017; Sugiuichi et al. 2005; Ventre-Dominey 2014). The core of the vestibular cortex (shown in red) is located in the midposterior Sylvian fissure and consists of the parieto-insular vestibular cortex area (PIVC) and the posterior insular cortex area [PIC; visual posterior Sylvian area (VPS) in nonhuman primates]. The presence of vestibular signals in areas shown in white is indicated (Cottereau et al. 2017) but requires further investigation. Areas 3av and 7 in the nonhuman primate brain may be further separated into two portions each (3aNv and 3aHv; 7a and 7b) (Guldin and Grüsser 1998). Areas 3aNv and 3aHv are located in the somatosensory neck/trunk and hand/arm representations of the central sulcus, respectively. Some studies have noticed activations in the inferior frontal cortex during vestibular stimulation (see Lopez and Blanke 2011; Ventre-Dominey 2014), but since the evidence for the existence of vestibular responses in these areas is still sparse, we did not include them in our overview of the vestibular network. In addition to the parahippocampal gyrus (PHG), vestibular signals have been found also in the human hippocampus (e.g., Vitte et al. 1996; Dieterich et al. 2003; Suzuki et al. 2001). In the rodent brain a larger circuit of structures including the hippocampus, the entorhinal cortex, and the retrosplenial cortex uses vestibular cues to generate spatial signals related to heading direction and location in space (Cullen and Taube 2017; Shinder and Taube 2010; Taube 2007). AI, anterior insula; CSv, cingulate sulcus visual area; FEF, frontal eye fields (in particular the portion that controls smooth pursuit eye movements); MIP/VIP, medial/ventral intraparietal area; MST, medial superior temporal area; MSTd, dorsal portion of the MST; PC, precuneus; STP/STS, polysensory area of the superior temporal sulcus; TPJ, portion of the temporo-parietal junction bordering the posterior Sylvian fissure.

J Neurophysiol • doi:10.1152/jn.00907.2017 • www.jn.org

Downloaded from journals.physiology.org/journal/jn (208.099.240.162) on September 29, 2023.
DeAngelis, and colleagues in rhesus monkeys (2018; Guldin and Grüsser 1998). Later studies by Angelaki, 1976) but is now referred to as VPS (Chen et al. 2011; Guobarian et al. 1992, 1994; Guldin et al. 1992; Jones and Burton PIVC, an area that was originally described as area T3 (Ak-Grüsser 1998). These two areas are PIVC and, posterior to
areas exist in the midposterior Sylvian fissure (Guldin and
work on the organization of the vestibular cortex in Java
NONHUMAN PRIMATES
VESTIBULAR AREAS IN THE SYLVIAN FISSURE OF
the human brain. We will start our discussion with an intro-
duction to the structure and function of the vestibular cortex in
the Sylvian fissure of nonhuman primates.

VESTIBULAR AREAS IN THE SYLVIAN FISSURE OF
NONHUMAN PRIMATES
Grüsser, Guldin, and colleagues have performed pioneering
work on the organization of the vestibular cortex in Java
(Macaca fascicularis) and squirrel (Saimiri sciureus) monkeys.
The results of these studies suggest that at least two separate
areas exist in the midposterior Sylvian fissure (Guldin and
Grüsser 1998). These two areas are PIVC and, posterior to
PIVC, an area that was originally described as area T3 (Ak-
barian et al. 1992, 1994; Guldin et al. 1992; Jones and Burton
1976) but is now referred to as VPS (Chen et al. 2011; Gu
2018; Guldin and Grüsser 1998). Later studies by Angelaki,
DeAngelis, and colleagues in rhesus monkeys (Macaca mu-
latta) have confirmed and extended the separation between
PIVC and VPS (see below). In the following, we will review
the location, connectivity, and function of these two areas in
the vestibular cortex of nonhuman primates.

First described based on evidence from cytoarchitectonics
by Pandya and Sanides (1973), area PIVC is located in the
depth of the Sylvian fissure, in a region spanning from the
posterior end of the insula to the posterior parietal operculum
and the retroinsula (Akbarian et al. 1988, 1994; Grüsser et al.
1990a; Guldin et al. 1992; Guldin and Grüsser 1998). In
contrast, VPS is located more posterior in the Sylvian fissure
than PIVC and extends from the posterior end of the retroinsula
to the more posterior area T3 (Akbarian et al. 1994; Guldin
et al. 1992; Guldin and Grüsser 1998). Tracer studies have shown
that PIVC is connected with other key regions of the cortical
vestibular network, including areas 3aNv, 3aHv, 2v, 7a and 7b,
6v, VPS, retinoinsular and posterior insular cortices, 8a (a
region referred to as the frontal eye fields in Fig. 1A), SII
corresponding to the secondary somatosensory cortex), and
the cingular sulcus (Guldin et al. 1992; Guldin and Grüsser
1998). With some exceptions, the cortical connectivity of VPS
largely overlaps with that of PIVC, but VPS is also connected
with the superior temporal sulcus and with temporoparietal
and parieto-occipital regions (Guldin et al. 1992; Guldin and
Grüsser 1998). On the subcortical level, PIVC is connected
with the ventral posterior thalamus (specifically the posterior
parts) and the medial pulvinar (Akbarian et al. 1992). Both
PIVC and VPS have direct efferent projections to the
vestibular nuclei in the brain stem, suggesting a cortical
influence on brain stem-dependent vestibular reflexes (Akbar-
ian et al. 1994; Guldin and Grüsser 1998).

Recent studies in rhesus monkeys suggest that neurons in
both PIVC (Chen et al. 2010; Liu et al. 2011) and VPS (Chen
et al. 2011) respond to translational and rotational head or full
body movements, extending previous reports for Java and
squirrel monkeys (Akbarian et al. 1988; Grüsser et al. 1990a;
Guldin et al. 1992; Guldin and Grüsser 1998). In VPS, neurons
are also tuned to optic flow cues, which combine with the
vestibular cues either in a congruent or an incongruent fashion
in different neurons (Chen et al. 2011). Contrary to other
visual-vestibular areas such as MST or the ventral intraparietal
area (VIP), the majority of cells in VPS appear to prefer visual
and vestibular cues in incongruent directions (Chen et al.
2011), the reason for this is currently unclear (Gu 2018).
The visual input may reach VPS by means of a retino-collicular-
pulvinar pathway (Akbarian et al. 1992) and through connec-
tions with other extrastriate visual areas, including the superior
temporal sulcus (Guldin et al. 1992).

Originally, Guldin and Grüsser (1998, p. 255) summarized
the functional differences between PIVC and VPS as such:
“The PIVC is a vestibular region with optokinetic input
whereas the VPS is an optokinetoric region with vestibular
input.” However, more recent results in rhesus macaques by
Chen, DeAngelis, and Angelaki (2010) could find no evidence
for visual responses in PIVC, whereas such responses were
clearly present in VPS (Chen et al. 2011). Moreover, the results
by Chen et al. (2011) suggest that more neurons in VPS of
rhesus monkeys may be tuned to vestibular stimuli than pre-
viously reported for squirrel monkeys (Guldin and Grüsser
1998).

It is difficult to reconcile these contradictory results on
visual responses in PIVC. Some of the differences might be
accounted for by the visual stimuli and by the occurrence of
tracking eye movements during the visual stimulation. Studies
that reported visual activity in PIVC either used large field
optokinetic stimuli by rotating a drum with visual patterns
around the monkey (Akbarian et al. 1988; Grüsser et al. 1990a;
Guldin et al. 1992) or a single moving visual target (Shinder
and Newlands 2014). In contrast, Chen et al. (2010) used 3D
optic flow cues. Moreover, visual tracking eye movements
following the moving visual targets might have influenced the
activity in PIVC (Akbarian et al. 1988; Grüsser et al. 1990a;
Guldin et al. 1992; Shinder and Newlands 2014).
such ocular responses were suppressed in the study by Chen et al. (2010), who trained the monkeys to maintain central fixation. Therefore, the existence of visual responses in area PIVC in nonhuman primates remains to be clarified. The results from human imaging studies on this matter (see ARE PIVC AND PIC SEPARATE REGIONS?) are less controversial and suggest a robust effect of activity suppression in PIVC when visual (motion) cues are presented (Brandt et al. 1998; Deutschloränder et al. 2002; Frank et al. 2016b; Kleinschmidt et al. 2002; Laurienti et al. 2002; Shulman et al. 1997) and specifically when the visual stimuli are processed attentively (Frank et al. 2016a). Moreover, functional imaging studies in humans indicate that both tracking eye movements (Konen et al. 2005; Nagel et al. 2006) and fixation suppression of optokinetic or caloric nystagmus (Dieterich et al. 1998; Naito et al. 2003) are both correlated with a suppression of activity in PIVC.

The work of Grüsser, Guldin, and their colleagues has shown that the region they refer to as PIVC is a multisensory region, where neurons are responsive not only to vestibular cues, but also to somatosensory stimuli. In particular, stimulation of the neck and shoulder receptors (induced by movements of the trunk while the head is stationary) evoked activation in neurons that exhibit vestibular tuning (Akbarian et al. 1988; Grüsser et al. 1990a, 1990b). In humans, vibratory stimuli applied at the neck lead to activation in the posterior Sylvian fissure (Bottini et al. 2001; Fasold et al. 2008). Therefore, these studies suggest that while neurons in PIVC are primarily driven by vestibular stimulation, some of these neurons can also be driven by somatosensory stimulation of cervical mechanoreceptors. In agreement with these results vestibular signals in PIVC appear to be represented in a reference frame that is intermediate between a head-centered and body-centered coordinate system (Chen et al. 2013). Moreover, some neurons in the PIVC region are also activated by somatosensory cues that are unrelated to head/body movements, such as touch of the skin (Akbarian et al. 1988; Grüsser et al. 1990a, 1990b), again emphasizing the multisensory nature of PIVC.

To summarize, the results from nonhuman primate studies suggest that vestibular responses in the Sylvian fissure may be clustered into at least two separate regions, referred to as PIVC and VPS. Both of these areas also respond to other sensory cues such as somatosensory stimuli, but recent results suggest that the response patterns of PIVC and VPS might differ dramatically during visual processing: whereas VPS clearly responds to visual motion cues (Chen et al. 2011), PIVC may show only weak or negligible responses (Chen et al. 2010). This functional dissociation is supported by anatomical differences in the connectivity of PIVC and VPS, where VPS may receive visual signals from the pulvinar and the superior temporal sulcus. We will now compare these results to evidence obtained in human subjects and begin with a brief introduction to prominent vestibular stimulation techniques in humans during functional brain imaging.

IDENTIFICATION OF PIVC AND PIC USING FUNCTIONAL BRAIN IMAGING IN HUMANS

The optimal stimuli required to activate the vestibular sensory system would be active or passive head movements. Such stimuli can be combined easily with neuronal recording techniques that do not necessitate the immobilization of the subject’s head and body (for example, single cell recordings in nonhuman primates or electroencephalographic recordings in human participants, e.g., Gale et al. 2016; Gutting et al. 2015). However, the constraints imposed by functional brain imaging techniques in humans such as functional magnetic resonance imaging (fMRI) or positron emission tomography (PET) do not easily allow for such movements, since they require the immobilization of the participant’s head. Although there have been some attempts to induce controlled head motion during fMRI recordings (see Petit and Beauchamp 2003; Schindler and Bartels 2018), brain imaging studies in humans using head movements for vestibular stimulation have remained an exception.

Therefore, rather than direct vestibular cues, artificial stimulation techniques have been used to activate the vestibular system (Dieterich and Brandt 2008, 2015; Lopez and Blanke 2011; Lopez et al. 2012; zu Eulenburg et al. 2012). Two prominent methods are caloric vestibular stimulation (CVS) and galvanic vestibular stimulation (GVS). Both techniques activate the vestibular system artificially. In CVS the external auditory canal is stimulated with a tempered medium such as water or gas. Typically, hot or cold is used and the change in temperature relative to body temperature in the middle ear induces movement sensation. In GVS, electrical stimulation is applied noninvasively to the skin over the mastoid processes (with an anode and a cathode on opposite sides), which galvanically activates the nerve afferents of both the otoliths and the semicircular canals on the side of the cathode, while the firing rate decreases on the side of the anode (Cohen et al. 2012; Curthoys and MacDougall 2012; Fitzpatrick and Day 2004; Goldberg et al. 1984; Wardman et al. 2003). In both CVS and GVS the artificially evoked vestibular signals are propagated to the cortex and activate key regions of the vestibular network (Lopez et al. 2012). The cortical activations with both techniques overlap in the midposterior Sylvian fissure (Lopez et al. 2012; zu Eulenburg et al. 2012), although some differences in the specific activation patterns in other regions have been noticed (Lopez et al. 2012). Moreover, both CVS and GVS may evoke compensatory eye movements (for CVS, those are referred to as caloric nystagmus, e.g., Bronstein et al. 2015; Naito et al. 2003) and may induce illusionary sensations of self-motion, which are usually experienced as rotations in the yaw and roll planes for CVS (Frank and Greenlee 2014; Frank et al. 2016b), whereas the movement sensation is more complex for GVS due to the stimulation of both semicircular canal and otolith nerve afferents (Cohen et al. 2012; Fitzpatrick and Day 2004; Lobel et al. 1998; Stephan et al. 2005; Wardman et al. 2003).

In our own experiments we have used MRI-safe CVS (Frank and Greenlee 2014) to identify the average location of PIVC across participants. Figure 2 shows the results of a group analysis (based on data from Frank et al. 2016b). The location of PIVC coincides with the parietal operculum, specifically with the subregion labeled as OP2–3 in the recent multimodal anatomical segmentation of the cerebral cortex by Glasser et al.
(2016). PIVC also borders on the posterior extent of the insular gyrus.

To identify PIC, we have used visual object-motion cues. Although it was recently reported that PIC also responds to CVS (Frank et al. 2014, 2016b; see also Roberts et al. 2017), GVS (Billington and Smith 2015), and natural head movements (Schindler and Bartels 2018), we have used a visual motion localizer consisting of 100% coherent dot fields to define PIC, since one of our goals was to relate our results to original descriptions of PIC that employed visual motion stimuli (e.g., Claes et al. 2003; Orban et al. 2003; Sunaert et al. 1999). Compared with PIVC, area PIC is located at a more posterior site in the Sylvian fissure (Fig. 2), primarily in the retroinsular cortex, partially extending into the posterior end of the Sylvian fissure in a region referred to as PSL by Glasser and colleagues (2016).

The locations we report here for PIVC and PIC agree with results of previous imaging studies of the vestibular system, which concluded that these sites represent the core of the vestibular cortex in humans (Lopez et al. 2012; zu Eulenburg et al. 2012). However, these earlier studies did not consider the possibility that a visually responsive area, PIC, could also be located posterior to PIVC. In the following, we will review recent evidence suggesting that PIVC and PIC are indeed different areas rather than two parts of the same region.

ARE PIVC AND PIC SEPARATE REGIONS?

Anatomical Differences

PIVC and PIC are located at different anatomical sites in the Sylvian fissure (see Fig. 2) and also differ in their anatomical connectivity patterns. In a recent human imaging study, Wirth et al. (2018) defined PIVC and PIC by means of their functional responses to vestibular and visual motion cues and investigated their anatomical connections with diffusion weighted imaging (DWI) and tractography analysis. The results of this study suggest that PIC is more strongly connected with the supramarginal gyrus and the superior temporal sulcus compared with PIVC (Wirth et al. 2018). The supramarginal gyrus is part of a larger region that is referred to as the temporoparietal junction. Other studies using the DWI approach (Smith et al. 2018) suggest that connections exist between PIC and the cingulate sulcus visual area (CSv), which is another key region in the network of areas that processes visual cues related to self-motion (Smith et al. 2017). Area CSv also responds to GVS (Smith et al. 2012). Furthermore, other visual optic flow-sensitive areas in the parietal cortex (e.g., VIP, the precuneus motion area, and area 2v) have anatomical connections that terminate in the region where PIC is located (Uesaki et al. 2018). Compared with PIC, area PIVC has more pronounced connections to the anterior insula, Heschl’s gyrus, the precuneus, the IPS, and the posterior callosum (Wirth et al. 2018). This study also showed that PIVC and PIC are strongly interconnected and that both areas have connections with the insula, other portions of the Sylvian fissure, the parietal cortex, the superior temporal cortex, and the inferior frontal gyrus. Subcortically, both PIVC and PIC are connected with the lateral nuclei of the thalamus (including the ventral posterior lateral, lateral posterior, ventral lateral, and ventral anterior nuclei), the pulvinar, and the basal ganglia (in particular the putamen) (Wirth et al. 2018). Another recent connectivity study in humans reported that the posterolateral thalamic region connects the vestibular nuclei in the brain stem with PIVC (Kirsch et al. 2016).

Taken together, the evidence from DWI and tractography indicates that PIVC and PIC exhibit different anatomical connectivity fingerprints. Specifically, the connections between PIC and other visual regions in the superior temporal, parietal, and cingulate cortices, support the existence of visual responses in PIC. Moreover, both PIVC and PIC share connectivity with other key structures of the cortical and subcortical vestibular network.

Functional Differences

The most robust evidence for functional differences between PIVC and PIC is their opposite response patterns during visual processing. Whereas PIC is strongly activated by various types of visual motion cues (Antal et al. 2008; Beer et al. 2009; Claes et al. 2003; Dupont et al. 1994, 1997; Ferri et al. 2016; Frank et al. 2014, 2016b; Indovina et al. 2005; Maffei et al. 2010; Miller et al. 2008; Orban et al. 2003; Sunaert et al. 1999), PIVC is suppressed during dynamic visual stimulation (e.g., Brandt et al. 1998, Deutschländer et al. 2002; Frank et al. 2016a, 2016b; Kleinschmidt et al. 2002; Laurienti et al. 2002; Shulman et al. 1997). This suppression of PIVC can already be observed a few weeks after birth (Biagi et al. 2015). In the following, we will use the term “suppression” to refer to lower activity in one condition relative to a control or baseline condition.

Brandt and colleagues (1998) reported in a PET-imaging study that visually induced sensations of self-motion (referred to as “vection”; see Bremmer 2011; Britten 2008; DeAngelis and Angelaki 2012; Gibson 1950; Greenlee 2000; Greenlee et al. 2016; Lappe et al. 1999; Smith et al. 2017) were correlated with suppressed activity in PIVC. They proposed a theory of reciprocal inhibitory visual-vestibular interactions, where visual stimulation inhibits the vestibular system, and vice versa, thereby avoiding visual-vestibular conflicts (Brandt et al. 1998; Dieterich and Brandt 2015). An important question for the theory of inhibitory visual-vestibular interactions is whether the proposed suppression of PIVC is specific to visual stimuli that induce vection or whether the inhibition can be induced under other conditions as well. Moreover, it is unclear whether inhibitory visual-vestibular interactions are also found in PIC.

Previous studies have reported evidence that visual processing that does not induce vection already suppresses PIVC (e.g., Laurienti et al. 2002; Shulman et al. 1997) and that simultaneous vestibular cues cannot completely abolish this visually induced suppression (Della-Justina et al. 2015; Deutschländer et al. 2002). However, visual stimuli that induce vection appear to evoke a stronger suppression of PIVC (Kleinschmidt et al. 2002).

One possibility is that the suppression of PIVC during visual processing without vection may be augmented when the visual stimuli are actively attended rather than merely perceived (Frank et al. 2016a). We examined this possibility by using an attentional tracking paradigm (Pylyshyn and Storm 1988), where the amount of attentional load can be varied parametrically while the amount of visual information remains constant (see Culham et al. 2001) (Fig. 3A).

J Neurophysiol • doi:10.1152/jn.00907.2017 • www.jn.org

Downloaded from journals.physiology.org/journal/jn (208.099.240.162) on September 29, 2023.
disks. Then, all disks moved randomly across the screen for a period of 14 s and participants attentively tracked the targets while maintaining central fixation.

of disks was designated targets and presented in green color. After cueing the target disks turned white and were physically undistinguishable from the distractor

in future studies. Finally, possible behavioral effects hypothesis is supported by recent findings that show anatomical connections between IPS and PIVC (Wirth et al. 2018). Moreover, the origin of the inhibition should be investigated. If the inhibition that is due to increased attention to the visual stimulus during vection.

ate visual processing activates PIC rather than suppressing it. However, do visual motion cues such as optic flow that induce vection evoke a response in PIC that is different from the response to mere object motion? Several studies have addressed this question and found that PIC — in addition to other areas of the visual motion network such as MST, VIP, or CSv (Smith et al. 2017) — responds stronger during periods of vection, which could suggest that PIC processes visual cues related to self-motion2 (Cardin and Smith 2010, 2011; Huang et al. 2015; Kirollos et al. 2017; Nishiike et al. 2002; Uesaki and Ashida 2015; Wada et al. 2016). However, in many of these studies brain activity in the posterior Sylvian fissure during visual self-motion has been interpreted as corresponding to PIVC (Cardin and Smith 2010, 2011; Huang et al. 2015; Nishiike et al. 2002; Riccelli et al. 2017; Uesaki and Ashida 2015; Wada et al. 2016), whereas more recent discussions have

The results of this fMRI-study (Frank et al. 2016a) suggested that there was only minor suppression of PIVC when participants passively viewed the moving stimuli, confirming previous reports (Frank et al. 2016b; Kleinschmidt et al. 2002). However, the magnitude of suppression increased dramatically once attention was directed to visual processing (Fig. 3, B and C).1 Different effects were found in PIC, where visual attention increased activity (Frank et al. 2016a; see also Luks and Simpson 2004).

1 A new interpretation of the theory of inhibitory visual-vestibular interactions has to take into account the role of visual attention. For example, periods of visual stimulation during which participants sense vection may be associated with increased levels of attention. Therefore, the amount of suppression induced by the sensation of vection has to be dissociated from the suppression that is due to increased attention to the visual stimulus during vection. Moreover, the origin of the inhibition should be investigated. If the inhibition of PIVC is primarily caused by visual attention, area IPS, a key structure of the fronto-parietal attention network, might trigger the suppression of PIVC. This hypothesis is supported by recent findings that show anatomical connections between IPS and PIVC (Wirth et al. 2018). Finally, possible behavioral effects of visual attention on the vestibular system (e.g., an alternation of vestibular thresholds during periods of attentive visual processing) should be investigated in future studies.

These results suggest that the suppression of PIVC during visual processing is strongly influenced by attention and that attentive visual processing activates PIC rather than suppressing it. However, do visual motion cues such as optic flow that induce vection evoke a response in PIC that is different from the response to mere object motion? Several studies have addressed this question and found that PIC — in addition to other areas of the visual motion network such as MST, VIP, or CSv (Smith et al. 2017) — responds stronger during periods of vection, which could suggest that PIC processes visual cues related to self-motion2 (Cardin and Smith 2010, 2011; Huang et al. 2015; Kirollos et al. 2017; Nishiike et al. 2002; Uesaki and Ashida 2015; Wada et al. 2016). However, in many of these studies brain activity in the posterior Sylvian fissure during visual self-motion has been interpreted as corresponding to PIVC (Cardin and Smith 2010, 2011; Huang et al. 2015; Nishiike et al. 2002; Riccelli et al. 2017; Uesaki and Ashida 2015; Wada et al. 2016), whereas more recent discussions have

Fig. 3. Cross-modal suppression of activity in PIVC by visual attention (see Frank et al. 2016a).

A: attentional tracking task. At the beginning of each trial a subset of disks was designated targets and presented in green color. After cueing the target disks turned white and were physically undistinguishable from the distractor disks. Then, all disks moved randomly across the screen for a period of 14 s and participants attentively tracked the targets while maintaining central fixation. At the end of each trial one disk was highlighted in blue and participants indicated whether this disk was a target or a distractor by pressing one of two buttons. Participants received feedback about the correctness of their response. B: a detailed analysis of activation in PIVC (for a subset of n = 8 participants with individual caloric localizer scans) suggested that the suppression in PIVC was a true suppression of activity below baseline (corresponding to activation during a dark blank screen, “0” on y-axis). Moreover, the suppression scaled with the visual attentional load: There was a moderate suppression of activity in PIVC during passive viewing of the moving disks (corresponding to “Tracking Load 0” on the x-axis), which increased dramatically once visual attention became involved during tracking (see the linear increase in suppression for tracking 1–4 disks on the x-axis). C: top: whole brain activity during attentional tracking (n = 25 participants). Activity in the fronto-parietal attention network (frontal eye fields, FEF, and posterior parietal cortex, PPC) and in the visual motion sensitive area MT+ increased when the attentional load on the visual system increased (color coded as red-yellow). In striking contrast to these effects, the ongoing activity in PIVC (shown by crosshairs) became increasingly suppressed with increasing attentional loads (color-coded as blue-white). Other regions with suppressed activity correspond to the default mode network, which PIVC is not part of (see Raichle 2015). Bottom: the average location of PIVC (shown by crosshairs) in a sample of n = 25 different participants who performed caloric vestibular localizer scans (unpublished data), as described previously (see Frank et al. 2016b). Please note that a conservative statistical threshold (P < 0.001, false discovery rate corrected) was chosen for the definition of caloric vestibular activity corresponding to PIVC, which removed less significant activations in other regions of the cortical vestibular network. PIVC, parieto-insular vestibular cortex.

1 A new interpretation of the theory of inhibitory visual-vestibular interactions has to take into account the role of visual attention. For example, periods of visual stimulation during which participants sense vection may be associated with increased levels of attention. Therefore, the amount of suppression induced by the sensation of vection has to be dissociated from the suppression that is due to increased attention to the visual stimulus during vection. Moreover, the origin of the inhibition should be investigated. If the inhibition of PIVC is primarily caused by visual attention, area IPS, a key structure of the fronto-parietal attention network, might trigger the suppression of PIVC. This hypothesis is supported by recent findings that show anatomical connections between IPS and PIVC (Wirth et al. 2018). Finally, possible behavioral effects of visual attention on the vestibular system (e.g., an alternation of vestibular thresholds during periods of attentive visual processing) should be investigated in future studies.

2 Future studies should try to dissociate the amount of activation in PIC that is due to increased attention during vection from the activity that is due to the sensation of vection.
reinterpreted these activations as corresponding to PIC (Kior-llos et al. 2017; Smith et al. 2017, 2018; Uesaki et al. 2018). The strong suppression of PIVC during visual processing as well as the location of PIC in the retrosinula and more posterior parietal regions where activity during vection or self-motion-related visual processing is usually observed (Cardin and Smith 2010, 2011; Huang et al. 2015; Nishiike et al. 2002; Riccelli et al. 2017; Uesaki and Ashida 2015; Wada et al. 2016) suggest that these earlier studies have observed activation that corresponds to PIC rather than PIVC.

Finally, if PIC is to be considered a vestibular area, it should also respond to vestibular cues induced by CVS/GVS or head movements. Early imaging studies have observed such activations in the retrosinular cortex (e.g., Bense et al. 2001; Bottini et al. 2001; Deutschländer et al. 2002; Dieterich et al. 2003; Fink et al. 2003; Indovina et al. 2005; Lobel et al. 1998; Petit and Beauchamp 2003; Smith et al. 2012; Stephan et al. 2005) but did not conduct independent visual motion localizers for PIC. The location of PIC in the retrosinula coincides with the location of a distinct activation cluster reported in a meta-analysis of functional imaging studies of the vestibular cortex (Lopez et al. 2012). In this meta-analysis, the retrosinular cortex was the only region besides the parietal operculum and the posterior insula where strong vestibular activations across studies were observed. We speculate that this common activation in the retrosinular cortex may correspond to, or overlap with, area PIC. More recently, vestibular responses have been confirmed in PIC during CVS (Frank et al. 2014, 2016b; see also Roberts et al. 2017), GVS (Billington and Smith 2015), and active head movements (Schindler and Bartels 2018). Some studies have also reported evidence for integrated visual-vestibular signals in PIC (Billington and Smith 2015; Schindler and Bartels 2018; see also Roberts et al. 2017). Area PIC in humans may thus show similarities with other regions of the vestibular cortex (e.g., areas MST or VIP), which do not only respond to visual and vestibular stimuli but also appear to integrate them for an accurate representation of heading direction (Gu 2018; Lopez and Blanke 2011; Smith et al. 2017).

In summary, PIVC and PIC are similar because they both process vestibular cues. However, they are strikingly dissimilar in their responses to visual stimulation: PIC is activated, while PIVC is suppressed. These effects are dramatically augmented by visual attention. The differential activity patterns in PIVC and PIC suggest that both areas are not only anatomically but also functionally distinct.

COMPARISON OF RESULTS IN NONHUMAN PRIMATES AND HUMANS

To summarize, the anatomical location and cortical/subcortical connectivity of PIVC and VPS in nonhuman primates shows parallels to that of PIVC and PIC in humans (see also Smith et al. 2017). Specifically, the location of neurons with vestibular tuning in a region ranging from the posterior insula to the parietal operculum, the retrosinula, and posterior sections of the Sylvian fissure is similar to the location of areas PIVC and PIC in humans. Comparing the structural connectivity between species is more difficult since different techniques (ex vivo tracer studies vs. in vivo MRI-based DWI) were used. However, structural connections between PIVC/PIC/VPS and the pulvinar and between PIC/VPS and the superior temporal sulcus were found with the respective methods in both species. Moreover, the functional response characteristics of PIVC and VPS, except the controversial results concerning activation in PIVC for optokinetic vs. optic flow cues, show parallels to the human PIVC and PIC.

Although it is tempting to infer that there is a similar organization of the vestibular cortex in humans and nonhuman primates, it is difficult to draw such conclusions without further evidence. For instance, it would be important to show that CVS/GVS in monkeys activates both PIVC and VPS, whereas visual stimulation/visual attention suppresses activity in PIVC but not in VPS. First results using functional MRI in nonhuman primates are promising and suggest that VPS in rhesus macaques prefers optic flow cues that simulate self-motion, similar to PIC in human observers (Cottereau et al. 2017).

A CONCEPT FOR THE ORGANIZATION OF THE CORE OF THE VESTIBULAR CORTEX

Recent studies have referred to activation in the midposterior Sylvian fissure as “PIVC/PIC” (Biagi et al. 2015; Billington and Smith 2015) or “PIC+” (Uesaki et al. 2018), implying an organization that is similar to the so-called “MT+ complex,” a region of extrastriate visual cortex that consists of two anatomically and functionally separate areas (areas MST and MT), which are commonly referred to as “MT+” (Born and Bradley 2005; Huk et al. 2002). Given what is known about areas PIVC and PIC, is it justified to suggest a similar “PIVC+” in the vestibular cortex of humans? We believe that the reviewed studies in this article suggest that two separate areas do exist in the midposterior Sylvian fissure. These two areas, PIVC and PIC, are similar in some regards (both respond to vestibular stimuli) but dissimilar in others (PIVC is suppressed during visual processing whereas PIC is strongly activated). Based on these results, we propose the following tentative organization of the core of the vestibular cortex (see Fig. 4).

We assume that visual and vestibular signals reach PIC and PIVC from several subcortical structures, including the lateral thalamic nuclei (specifically the ventral posterior nucleus) and the pulvinar (Wirth et al. 2018). The pulvinar as well as the superior temporal sulcus and other cortical regions of the visual self-motion network (e.g., MST, VIP, CSv, see Smith et al. 2017) may exchange visual signals with PIC (Smith et al. 2018; Uesaki et al. 2018; Wirth et al. 2018). Furthermore, we hypothesize that the suppression of PIVC during attentive visual processing is triggered by the IPS, a key structure of the attention network and anatomically connected with PIVC (Wirth et al. 2018). Based on nonhuman primate results (Guldin and Grüsser 1998) and indications in recent DWI studies (Smith et al. 2018; Uesaki et al. 2018; Wirth et al. 2018) we predict that both PIVC and PIC have connections with several other structures of the cortical vestibular network such as areas 7, 3av, and 2v, although this has to be confirmed in future studies.

What are the functions of areas PIVC and PIC? The answer, at this point, must remain speculative, but based on the available evidence in humans and nonhuman primates we propose that PIVC encodes head and full body movements (Akbarian et al. 1988; Grüsser et al. 1990a) and is involved in estimating heading direction by means of such movements (Chen et al.
processing from PIVC+ is sent to the TPJ, where visual-vestibular signals related to self-motion and heading direction are integrated into an egocentric representation of the self in space (Blanke 2012; Falconer and Mast 2012; Ionta et al. 2011; Lopez 2015, 2016; Pfeiffer et al. 2014).

Future theories of PIVC and PIC will also have to consider the roles of other sensory cues (e.g., somatosensory signals), which activate neurons in PIVC (Akbarian et al. 1988; Grüsser et al. 1990a, 1990b) and potentially also in PIC (Bottini et al. 2001; Fasold et al. 2008; Gentile et al. 2011; Martin et al. 2004).

OPEN QUESTIONS

Even though the understanding of the human vestibular cortex has been advanced in the past decades, a lot of questions remain to be answered. Some of these questions that are specifically related to PIVC and PIC are

- How do PIVC and PIC interact with other areas of the vestibular cortex (e.g., areas 2v, 3av) and how do computations in each area relate to an overall sensation of self-motion?
- Is there a hemispheric dominance effect in PIC? A dominance of the right hemisphere of right-handed subjects in the cortical vestibular network has been suggested (Dietrich et al. 2003; zu Eulenburg et al. 2012), but it remains to be clarified whether there is dominance of right over left PIC in vestibular processing.
- What are the functional consequences of suppressing PIVC by visual attention? Since we strongly depend on our visual senses, one may assume that PIVC is suppressed permanently. Does such a sustained suppression have any consequences for the sensation of head movements or the estimation of heading direction, specifically when attention is focused on visual processing?
- Are central vestibular disorders (see Brandt and Dieterich 2017) associated with dysfunctions of areas PIVC and PIC, and if so, do the symptoms differ when the dysfunction affects primarily PIVC or PIC? Lesions in the region where PIVC and PIC are located result in tilts of the subjective visual vertical (Brandt et al. 1994), but more specific deficits in visual-vestibular processing such as impaired perception of visual gravitational motion (Mafei et al. 2016) could have their origin in lesions that affect primarily PIC rather than PIVC.

CONCLUSION

Traditionally, only a single region, PIVC, has been assumed to exist at the core of the vestibular cortex in humans. However, recent advances suggest that another area, referred to as PIC, is located in the retroinsular cortex posterior to PIVC. Area PIC has been identified in human imaging studies almost ever, recent advances suggest that another area, referred to as PIC, is located in the retroinsular cortex posterior to PIVC.

In contrast to PIVC, PIC may serve two functions. One function could be the estimation of heading direction by combining visual and vestibular cues (Billington and Smith 2015; Frank et al. 2014, 2016b; Roberts et al. 2017; Schindler and Bartels 2018; VPS in nonhuman primates: Chen et al. 2011, 2016), while the other function could be the distinction between visual self-motion and visual object motion, potentially supported by neurons with incongruent visual-vestibular tuning (Gu 2018). In that regard, it is our observation that the sensory weight in PIC appears to be more on visual cues, since visual stimuli immediately evoke activation in PIC (Claeys et al. 2003; Frank et al. 2014, 2016b; Orban et al. 2003; Sunaert et al. 1999). We hypothesize that the output of visual-vestibular

2010, 2016). In contrast to PIVC, PIC may serve two functions. One function could be the estimation of heading direction by combining visual and vestibular cues (Billington and Smith 2015; Frank et al. 2014, 2016b; Roberts et al. 2017; Schindler and Bartels 2018; VPS in nonhuman primates: Chen et al. 2011, 2016), while the other function could be the distinction between visual self-motion and visual object motion, potentially supported by neurons with incongruent visual-vestibular tuning (Gu 2018). In that regard, it is our observation that the sensory weight in PIC appears to be more on visual cues, since visual stimuli immediately evoke activation in PIC (Claeys et al. 2003; Frank et al. 2014, 2016b; Orban et al. 2003; Sunaert et al. 1999). We hypothesize that the output of visual-vestibular

ACKNOWLEDGMENTS

We thank Alexandra Otto and Katharina Hense for help with data collection and our participants for their time. We are grateful to Christian Renner for
constructing and maintaining the caloric vestibular stimulation device. We thank Jeffrey Taube (Dartmouth College) for helpful comments on a previous version of the manuscript.

GRANTS
This research was funded in part by support from the German Research Council (Deutsche Forschungsgemeinschaft, project GR 988 25-1, core facility grant number INST 89/393-1) and from the University of Regensburg.

DISCLOSURES
No conflicts of interest, financial or otherwise, are declared by the authors.

AUTHOR CONTRIBUTIONS
S.M.F. and M.W.G. conceived and designed research; S.M.F. and M.W.G. performed experiments; S.M.F. analyzed data; S.M.F. and M.W.G. interpreted results of experiments; S.M.F. and M.W.G. prepared figures; S.M.F. and M.W.G. drafted manuscript; S.M.F. and M.W.G. edited and revised manuscript; S.M.F. and M.W.G. approved final version of manuscript.

REFERENCES

